
Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.1 
 

 

 

 

 

 

 

 

Chapter 6 

 
 

Advanced features of OOP 

 
 
JAVA is a fully object oriented programming language. In previous chapter-5, some 

features as Class, Object, reusing of Class, Inheritance etc. were discussed. Some 

advanced features of OOP like: Interface, Multiple Inheritance, Constructor, default 

constructor, Overloaded constructor, Package, Using the user defined Package, 

development of package, Package development environment, Integrated 

Development Environment, Eclipse etc. are discussed. 

 

Interface: 
 

JAVA does not support multiple inheritances. A child class can‟t inherit from 

multiple parents at a time but it is possible in C++. As example, class C can‟t inherit 

properties of Class A and Class B directly. But, Class C can inherit from Class B 

and Class B can inherit from Class A. It is known as single inheritance. But, through 

interfaces concept of multiple inheritances are possible to achieve and discussed 

below: 

Interfaces are like Class declaration and class constructions. But, interfaces don‟t 

contain and constructors. All variables of interfaces must be public, static and final 

by default; methods are public, abstract and non-static. Within interfaces different 

methods are declared but not constructed. According to the requirements, methods 

are constructed within the operating class which is created from the interface class. 

Multiple-inheritance is not provided by Java but, interface gives that facility in Java. 

Interface looks like a class and is declared as: 

 

public interface WildAnimal 
{ 
         public abstract void food(); 
} 
 

Rule: in JAVA, a class can‟t be inherited from multiple classes directly, but from multiple 

interfaces. 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.2 
 

Problem: wap to create two interfaces and then create another class from those two 

interfaces. Declare two methods within two interfaces and then call those methods 

from main() method. 

 

//Population.java: two interfaces are declared, a main class ‘Population’ is inherited from two 

interfaces ‘man’ and ‘home’. 

interface man 

{ 

 int count_man=5; 

 void product(); 

} 

interface home 

{ 

 int count_home=8; 

 void show(); 

} 

//new class is created from two interfaces 

class Population implements home, man 

{ 

 public void product() 

 { 

  System.out.println("Total population : "+count_man*count_home); 

 } 

 public void show() 

 { 

  System.out.println(" Total home : "+count_home); 

  System.out.println(" No of man per home: "+count_man); 

 } 

 public static void main(String arr[]) 

 { 

  Population pop= new Population(); 

  pop.show(); 

  pop.product(); 

 } 

} 

OUTPUT: 

Total home : 8 

 No of man per home: 5 

Total population : 40 

Discussion: in this program, two interfaces by names „man‟ and „home‟ are created 

within the same program. The main class „Population.java‟ is created from the two 

interfaces as: 

 class Population implements home, man 

 {…} 

The advantage is that the new class „Population‟ will inherit all properties of the 

both classes „man‟ and „home‟ which is the art of multiple inheritances of Java. All 

properties, as per declaration, will be inherited within the child class „Population‟ 

and through the object all methods and variables can be accessed as it is done: 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.3 
 

pop.show(); 

pop.product(); 

Accordingly, the product() method has achieved the rights of accessing variables of both 

interfaces as: 

count_man*count_home 

 

Problem: wap to create an Interface with two method declaration, then write another 

program where create a class from that interface, construct both the methods within 

this class and access both methods. 

//Hotel.java: this interface is used in Account.java program 
public interface Hotel { 
    public int nsf=10; 
    public void sweep(int noOfFloor); 
    public void cook(int noOfCheff); 
} 
 

//Account.java: this program calls interface Hotel.class 

//Hotel.java file should be created before and compiled. 

class Account implements Hotel  

{ 

     int fl = 0; 

     int sf = 0;    

      //constructing the method 

    public void sweep(int noOfFloor) { 

         fl = noOfFloor; 

         System.out.println("Number of floors in Hotel: " +fl);  

     } 

   //constructing another method 

   public void cook(int noOfSheff) { 

         sf = noOfSheff; 

         System.out.println("Number of Sheff in Hotel: " +sf); 

    } 

    public static void main(String[] arg){ 

  Account ac = new Account();    

  //implementation of methods     

  ac.sweep(5); 

  ac.cook(nsf); //nsf is a public member of interface Hotel 

               System.out.println("Number of Cheff per floor: " +(ac.sf/ac.fl));  

     } 

} 

OUTPUT: 

Number of floors in Hotel: 5 

Number of Sheff in Hotel: 10 

Number of Cheff per floor: 2 

 

Discussion: in this example, interface Hotel is an external class. It is a special class 

called Interface and have three properties of public data type, one is variable public 

int nsf=10; and other two are methods. Observe that methods are declared but not 

built. The working class „Account‟ is created making interface with „Hotel‟. Like 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.4 
 

reuses of class file, interface file is also reused in this program. Also, advantages of 

interfacing are demonstrated in the way that methods could be constructed as 

requirements within the working class. So, within different classes these methods 

can be overloaded with different functioning but, names will remain the same. 

 

 

Multiple Inheritance: 
 

When a class is created from another class and another interface or from two or more 

interfaces, properties of super class and the interface(s) are inherited within the new 

class. In previous examples, interfacing with single file are discussed, now, in this 

example interfacing with two interfaces are demonstrated. 

 

Problem: wap to create two interfaces by name man and home, and then create 

another class Population from these two interfaces. Demonstrate that properties of 

the two interfaces are accessible from the working class Population. 

 

//Population.java: two interfaces are created, another main class ‘Population’ is created from 

//these two interfaces. 

interface man 

{ 

     int count_man=5; 

     void product(); 

} 

interface home 

{ 

     int count_home=8; 

     void show(); 

} 

//a new class from two interfaces 

class Population implements home, man 

{ 

     public void product() 

    { 

  System.out.println("Total population: "+count_man*count_home); 

    } 

    public void show() 

    { 

 System.out.println(" Total home : "+count_home); 

 System.out.println(" No of man per home: "+count_man); 

    } 

   public static void main(String arrg[]) 

   { 

 Population pop= new Population(); 

 pop.show(); 

 pop.product(); 

   } 

} 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.5 
 

OUTPUT: 
Total home: 8 
 No of man per home: 5 
Total population: 40 
 

Discussions: multiple inheritances is achieved from two interfaces as an alternative 

way. In this example, two interfaces are created as „man‟ and „home‟ and a new class 

„population‟ is derived from these two interfaces. The keyword is „implements‟ used 

as: 

 

class Population implements home, man 

{ 

…. 

…. 

} 

 

In this way, multiple inheritances is possible in JAVA, but, it is not possible if 

„home‟ and „man‟ are like Classes.  

Lab Test1: in this program, add „private‟ identifier here “ private int count_man=5;” 

and you will get error message,  

        Population.java:4: error: modifier private not allowed here 

        private int count_man=5; 

Lab Test2: again put protected as “protected int count_home=8;” , compile and you 

will see error message: 

        Population.java:9: error: modifier protected not allowed here 

        protected int count_home=8; 

 
Constructor: 

 
Constructor has the same name as the class and is invoked automatically when an 

object(instance of class) is initiated. Constructor has no datatype or return value even 

void. It is like a method and can be overloaded with different arguments to create 

different versions of constructors. Sometimes it may be confused as a method. If you 

don‟t create a new overloaded constructor, it will be invoked automatically- no need 

to call it. But if you create duplicate versions of constructors with arguments that to 

be invoked externally. Within the class, constructor is created to initialize some jobs 

which would be common for all the program.  

 

There are two types of constructors: 
 

1. Default constructor: it has no arguments 

2. Overloaded constructors: it has one or more arguments. 
 

 

 

 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.6 
 

*An example of a Default constructor: 
 

//Home.java: demonstrate default constructor 
class Home 
{ 
 Home() 
 { 
  System.out.printf("Class instance has called me"); 
 } 
 public static void main(String[] args) 
 {  
  Home hm = new Home(); 
 } 
} 
 

*Another Example of argument-based constructor: 
 

 class Volume{ 
 int l, w, h; 
 Volume(int a, int b, int c){ 
  l = a; w=b, h=c;} 
 int vol(){ 
  int v=l*w*h; 
  return v;} 
} 
   

 *Calling the Constructor: 
 

Two ways to calling the constructors are shown below: 

 

 Home hm = new Home(); //calling default constructor having no arguments 
 Volume vol=new Volume(4, 7, 12);//calling constructor having three arguments 
 

Problem: wap to create a class with a constructor having two arguments-one is id 

and the other is the name of a student; create a method and from the main() call the 

constructor providing two data as arguments. 

 

//StdConstructor.java: constructor is a method and invoked automatically. 

//here, StdConsturctor() has the same name with the class name and has two 

//parameters of integer and string data types. 

class StdConstructor{ 

 int stdRoll; 

 String stdName; 

 StdConstructor(int id, String name) { 

  this.stdRoll = id; 

  this.stdName = name; 

 } 

void info(){ 

         System.out.println("Roll No: "+stdRoll+" Name: "+stdName); 

} 

 public static void main(String args[]){ 

  StdConstructor object1 = new StdConstructor(102,"Ramesh Goyel"); 

  StdConstructor object2 = new StdConstructor(103,"Marta Zurek"); 

  object1.info(); 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.7 
 

  object2.info(); 

 } 

}  

OUTPUT: 

Roll No: 102 Name: Ramesh Goyel 

Roll No: 103 Name: Marta Zurek 

 

Discussion: here, in main() method at first two objects are created by names object1 

and object2.  These objects have all access to their methods() created within the 

class. The class StdConstructor has a constructor by same name and initializes two 

variables. From the main() method, two objects call the constructors with two data as 

shown in the program. These two data go into two parameters of the two objects as 

shown in the figure.  

 
Fig. 6.1. Figure shows how to create object from a Class. Here, two objects are created by 

names object1 and object1. 

 

Problem: wap to construct two overloaded constructors, two methods by name 

add() with different arguments, create another main class by name ConstOverload 

and from the main() module call constructors and methods to display some data.  

 

// ConstOverload.java:Write a program in JAVA to demonstrate the method and constructor 

overloading. 

class Construct 

{ 

 int p, q; 

 public Construct(){} 

 public Construct(int x, int y){ 

  p=x; 

  q=y; 

 } 

 public int add(int i, int j){ 

  return (i+j); 

 

StdConstructor                         Class name 

Variable declarations 
Constructor  

User defined method 

  

object1                        object name Object name                      object2  



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.8 
 

 } 

 public int add(int i, int j, int k){ 

  return (i+j+k); 

 } 

 public float add(float f1, float f2){ 

  return (f1+f2); 

 } 

 public void printData(){ 

  System.out.print("First variable = "+p); 

  System.out.println("  : Second variable = "+q); } 

} 

class ConstOverload 

{ 

 public static void main(String args[]){ 

 int var1=101, var2=201, var3=301; 

 Construct c0=new Construct(); 

 Construct c1=new Construct(var1, var3 ); 

 c1.printData(); // constructor having two argument will perform 

 float f1=7.2F, f2=5.2F; 

 int k2=c0.add(var1,var2); // perform on add() having two int arguments 

 System.out.println("Value of k2 = "+k2); 

 int tot3=c0.add(var1,var2,var3); 

 System.out.println("total of 3 var= "+tot3); 

 float ft2=c0.add(f1, f2); 

 System.out.println("Value of ft2 = "+ft2); 

 } 

} 

OUTPUT: 

First variable = 101  : Second variable = 301 

Value of k2 = 302 

total of 3 var= 603 

Value of ft2 = 12.4 

 

Discussion: in this example concept of constructor overloading is shown. In java, 

when a class is created, a constructor by same name is also created- if the constructor 

is not created separately. Always, the name of constructor and the class are the same. 

Constructor has no data type. If constructor is not created, an empty constructor will 

be executed. Here, in this example, within the class „Construct‟ two constructors are 

created, the first one is empty and having done nothing within braces {}, but, the 

second constructor‟s name is same and has two arguments as: 

public Construct(int x, int y){ 

   p=x; 

   q=y;} 

When, by same name to constructor any method is created it is called overloading of 

constructor.  In this constructor two arguments are assigned as „int x, int y‟. It will be 

called through two arguments as: 

Construct c1=new Construct(var1, var3 ); 
   



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.9 
 

In this example, also function overloading is demonstrated. If by same name many 

methods are created, it is known as method overloading. Here, three methods are 

created by name „add()‟, but, careful observation will show that arguments are 

different for each method of „add‟;  the first method has two integer types of 

arguments as „add(int i, int j)‟ ; the second method has three arguments as  „add(int i, 

int j, int k)‟ and the third method has float type of argument as „public float add(float 

f1, float f2)‟. In these ways, methods are identified as different to the compiler. 

When any method is invoked with two integer values the corresponding method will 

be called and executed as „int k2=c0.add(var1,var2);‟ . Here, c0 is an object created 

from the class „Construct‟, so, this object has access to all variables and to all 

methods of the class. So, from the object, c0, the method add() has invoked or called 

in this way „c0.add(var1,var2)‟; the return value is integer of this method as 

declaration. A parameter is required to hold the return value of that method and 

written in this way:„k2=c0.add(var1,var2);‟. Variable „k2‟ was not declared before, 

to match the return data type of the method, it is declared as integer as „ int k2‟. 

 

In the same way, when the method is called as „int tot3=c0.add(var1,var2,var3);‟ the 

corresponding method will be invoked. In all cases, the name of the method is same 

but the arguments are different in numbers or as data type. This concept of using the 

same name of methods is known as method or function overloading. 

 

N.B. in Java, the term „method‟ is used instead of „function‟. 
 

 

Package: 
 

Till now, we have used many inbuilt packages of java such as: java, javax, lang, awt, 

swing, io, net, util etc. These packages contain some Classes, methods and constants 

or variables and importing a particular package we can use components of that 

package as: 

 

Import awt.*; 

import javax.swing.*; 
 

All inbuilt packages and Classes are reusable; users can import and use components 

present inside it. We have demonstrated in many programs how to create user 

defined class. Now we shall demonstrate how to create a user defined package and to 

create some classes inside that package. A package may contain classes, interfaces, 

enumerations, and annotations within it. The rule is that the ‘package’ statement 

should be the first line of the new program of creating a package. In a file only 

one package can be created and it is unique. 

 

An example is shown below: 

 

//Datareadwrite.java: to create a package 
package packDB;   
public class Datareadwrite{   
public void fileCon() 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.10 
 

{ 
   System.out.println("IP,Username,password to be given"); 
} 
public static void main(String[] args){   
       System.out.println(" to develop data reading..");   
   }   
}   
How to run this program: 
F:\example\javac –d . Datareadwrite.java 
F:\example\java packDB.Datareadwrite 

Discussions: Here, „-d‟ parameter is mentioned for telling the compiler about the 

directory where the package will be created. A new folder will be created as 

„packDB‟ and the compiled class file will be stored within that folder. After „-d‟ 

there is a full stop mark „.‟ which will indicate the directory to follow at the time of 

execution of the package. This full stop must be given after –d parameter. 

(N.B. when we tested the program by putting a comma „,‟ instead of full stop marks, 

it did not give any error in compilation, but, did not created either package directory 

nor the class file.)   

Rule: package name will be the same to the directory name where the package will 

be stored and the same directory name will be aerated automatically. 

An example of my computer is shown below: 

Directory of C:\example\advancedJAVA\packDB 
 
11-09-2021  11:01    <DIR>          . 
11-09-2021  11:01    <DIR>          .. 
11-09-2021  11:01               453 Datareadwrite.class 
               1 File(s)            453 bytes 
               2 Dir(s)  63,980,519,424 bytes free 

 
This example creates a new package by name „packDB‟ in the default directory 

where the program in compiled. It also creates a class „Datareadwrite.class‟ in the 

default directory after compilation. 

 

Using the user defined Package: 

 
In above example, we have created a package by name „packDB‟ and it creates a 

folder for the package automatically by the same name of the package „packDB‟. 

Now, we shall create a program which will import this package and use the class and 

method available under the package. 

 

 //ExPackage.java: this program uses package packDB and its method. 

import packDB.*;   

public class ExPackage{ 

public static void main(String[] args){  

 packDB.Datareadwrite rd=new packDB.Datareadwrite(); 

        rd.fileCon();// a method of the packDB package. 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.11 
 

       //System.out.println(" ..to develop data reading..");   

   }   

}   

 

Discussion: in this example previously created package „packDB‟ is imported, we 

have loaded all components present within the package as „import packDB.*;‟. 

Another point is that path of the class should be mentioned here as 

„packDB.Datareadwrite‟, because the class file is not available in the default 

directory but into the subdirectory of „packDB‟ as we have mentioned before when 

the package was created. 

 

 

Development of Package: 

 
A package is an integrated, interlinked and assembled thing of many components of 

programs. Everyday, we work with different software. Like: msword, msexel, 

windows, linux, unix, myjio, facebook, whatsapp etc. which all are examples of 

packages. If you check the folder of that software, you will see there are different 

subfolders and files which word in an integrated environment name as package. As 

general idea, we can say that they have compiled all these components under any 

development IDE and have made the package. Here, in this section, some 

preliminary concept of developing package will be given with practical examples. 

 

Eclipse: 
 

Eclipse is known as Integrated Development Environment (IDE). For developing 

java based large projects, it is impossible to manage large number of files from 

command line arguments. Eclipse is a software tool to manage projects under visual 

environments. It has all necessary menus and icons to manage the project. At opening 

it may ask about the workspace or directory of the project where it will be created as shown 

below: 

 

 
 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.12 
 

Fig. 6.2. opening window of Eclipse; it shows how to start a project under Eclipse. 

 

By clicking the Launch button, Eclipse will open a screen as shown below,  

 

 
 

Users can do necessary jobs selecting particular options. In this case, if we selected „Create a 

new Java project‟, it will ask to give name of project and then follows next steps. 

 

Creating a Project:  

 

A Project is an integrated form of many packages, classes, interfaces, constants etc. 

As example, JAVA is a project having many packages and other components inside 

it. 

 

In Eclipse, from the menu bar a new project can be initiated as: 

File > new > Java Project, (give a name, say proj2) 

 

 

 

Fig. 6.3. figure shows editor of development of project programs. Here, package name is 

„std‟ and the main class name is „Std.java‟; differences are that first letter is small in „std‟ 

package but, it is capital letter for „Std.java‟ class name. 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.13 
 

The main class name in „Std.java‟ which is created as:  from the package explorer 

pane of left side, select package name „student‟ then press right click> new > class> 

say „Std‟, if this class will contain main() module then select the check box as shown 

in figure, then click „Finish‟ button. Now, you have to write some code of 

programming as example, we have written as shown in figure. Once, let us check 

what we have done, work space-it is the project name; package name is „std‟ – first 

letter is in small letter; main class is „Std.java‟ which contain main() module. Now, 

we have to execute/run the program; select „Std.java‟ from left pane >right click on 

mouse> Run as > Java Application; you will see the output in the downmost pane of 

the screen.  

 

Another example with reusable class: 

 
In this example, using Eclipse, we have created a package „student‟ under the main 

class „Std.class‟ is created. That screen is shown below; we have run it as a project 

and output is shown below also.  

 
Fig. 6.4. figure shows setup environments 

 

All works are done.  

 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.14 
 

 
 

Fig. 6.5. figure shows the project „student‟ in left panel and the „Std.java‟ class 

After that, we have created another class „Routine.java‟ as shown below; this class 

does not contain main() module but contains two variables „class_date‟ and „teacher‟ 

with fixed data. This class is invoked by the main class „Std.java‟ and printed values 

of two variables.  

 

 
 

Fig. 6.6. figure shows the project „student‟ in left panel and another class „Routine.java‟ in 

right panel. 

All of these things are now under package „student‟ and project „proj2‟. In Eclipse, 

separate compilation is not required, it is done internally, we need to run the package 

by clicking right button of mouse over „Std.java‟>Run as> Java Application. We got 

result in down pane and shown in figure 6.7 below. The main class is „Std.java‟ 

which contain main(){…} module and when this class is compiled, all other 

components are compiled also. 

A project can be edited later also. Other modules can be added, deleted or edited as 

per requirements. All options are available under different menus of Eclipse IDE. 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.15 
 

 
 

Fig. 6.7.  figure shows the project „student‟, class „Routine.java‟ and class „Std.java‟ in left 

panel. To execute, the main class, Std.java, is executed. Output of the program is shown at 

down most panels. 

 

Below, both the programs are shown which are written within the Eclipse IDE for 

creating a package by name „student‟; it was created as a project „proj2‟. Within 

Routine.java only a simple class „Routine‟ is developed which was invoked within 

another program „Std.java‟. Now it has become a user defined package by name 

„student‟.  

 

//Routine.java 

package student; 
public class Routine { 
 int class_date=4; 
 String teacher=new String("Samiran Jain"); 
} 
//Std.java :  

package student; 
public class Std { 
 public static void main(String[] args) { 
  // TODO Auto-generated method stub 
  System.out.println("Eclipse project..."); 
  Routine rr=new Routine(); 
  System.out.println("Class dates:"+rr.class_date); 
  System.out.println("Teacher Name:"+rr.teacher); 
 } 
} 

 

N.B. these programs were written and executed under Eclipse IDE, from that editor 

program is copied, so, different colors are shown in different keywords. 

Some concepts of developing package or project are discussed but not sufficient for 

developing commercial projects. For that it is suggested to develop small projects 

with many class files, interlined with main class. Then, compile the main class and 

run the project. Results will be displayed within the result-panel of Eclipse. 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.16 
 

 

Select True / False: 

 
1. In Java Multiple Inheritances are possible through multiple interfaces.(T/F) 

 

2. Protected type of variable will be inherited within the derived class.(T/F) 

 

3. Private elements will be derived as private in derived class(T/F) 

 

4. Constructor name and Class name can be dissimilar(T/F). 

 

5. Default constructor has no arguments(T/F). 

 

6. Void keyword must be used at beginning of a constructor(T/F). 

 

7. In a class, many constructors can be there (T/F). 

 

8. Overloaded constructors can contain multiple arguments(T/F) 

 

9. Default constructor is called/executed by mentioning its name in main 

method(T/F) 

 

10. The keyword package creates a interface (T/F). 

 

 
Answer: 

1. True  ,  2. False ,     3. False   4. False    5. True 

 

6. False  , 7. True        8. True    9. False    10. False 

 
     

 

Short Questions: 

 

(a) What do you understand by OOP ? 

(b) Mention some features of OOP? 

(c) What is the advantages of inheritance? 

(d) Why it is required to create object to write program? 

(e) What is multiple inheritances? 

(f) Define constructor of JAVA. 

(g) What do you understand by constructor overloading? 

(h) How a package is can be created in JAVA? 

(i) Describe the Eclipse IDE. 

(j) What are the differences of a Project and a Package? 



Introduction to JAVA Programming: a programming guide by Dulal Acharjee 

 
 

6.17 
 

 

 

 

Link of PPT of this book and all source codes:  

https://drive.google.com/drive/folders/1bMxMCaqPe0W35COAdn_-

BrnV_uzQ-tNO?usp=sharing  

 

(Note: to get access, copy and paste this link to your browser) 

 

 

 

 

 

 

 

 

 

Copyrights:@ All rights of this book chapter is reserved to the publisher, Applied Computer 

Technology, Kolkata, India. No parts are allowed to reproduce in other book, media or publications, 

but, are allowed to use for academic non-profit purposed. For any permission of reproduction, write to 

info@actsoft.org, website: actsoft.org 

 

 

mailto:info@actsoft.org

