
Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.1

Chapter 5

Object Oriented Programming

We call it as „Object Oriented Programming(OOP), but, in real sense it is „Class

oriented programming‟. JAVA is a package of many classes and methods. In our

program we reuse these classes and methods as per our requirements. Class is not

used directly, first of all we create an object from the class and through that object

we access all methods and parameters of that class. An object is the instance of a

class, a real thing, through which we can work. From a class we can create multiple

number of objects. All classes are stored within different packages and all packages

are under java package. Learning of JAVA programming means- we should learn

about some classes and methods available under those classes. Example of some

classes used in this book are:

String: to do any string operations

DataInputString: to input string type of data from input device

Scanner: to input any number or string from keyboard or input device.

Graphics: to do all graphical operations like: mouse, icon, click, create picture etc.

Date: to do any manipulation over date type of data

Math: to do mathematical operations

Character: to do different international character codes.

Generally, in programming, we process some data and deliver some required

information. A program does three things- read data, process data and output data.

Without these three things there are nothing in concept of programming. Some

programs work internally and we can‟t see anything externally, as example, when we

make internet connection through MODEM(Modulation and DeModulation),

Dangle-we see nothing happened, but the software present inside the computer has

done lot of programming works and made connection with the server computer of

ISP(Internet Service Provider). So, if the actions of program are not visible also,

which may act on internal devices, do some changes- can perform desired jobs; all of

these are changing the status of a device from one mode to another mode. These are

the examples of different processes. It is said here because, object is some material

substances, we understand that. We process data of different objects in computer and

display information on monitor, store into the Disk or Pendrive etc. But, a process,

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.2

which is not a material substance, can be an object also which we can‟t touch but

feel. Examples of processes are: connection, write data, read data, start rocket,

monitor actions, create log file etc. All of these jobs are part of process and we create

object and through that we perform these jobs in programming.

Think about we process data of some material subjects like: book, school, student,

teacher, tree, animal, cow, home etc. Sometimes, verbs are used as nouns and can be

used as objects, as example: hope, desire, dream etc. Suppose, we want to make a

game on different types of dreams seen by different patients to analyse the brain

functions of a parent. Then, properties or attributes of Dream should be collected as:

time of dream, duration, patient name, type of disease etc. So, we conclude

discussion of object as: all materials are objects and all processes are also objects.

Creating an Object:

 String st; // creating object st
 st = new String(); //initiating st or assigning space as class String.
Or,

 Srting st = new String();
 String st2= new String(); or , String st3=st2;

Here st, st2 are objects and String() is the constructor of the Class String.

DataInputString in, in2, in3;
Scanner kb, mp, camera;

In this way multiple objects can be declared at a time.

Problem: wap to create a class Student with variables „name, city and age‟ along

with a method „printAll()‟ to display all data. Create another main class by name

„Stest‟ of main(), create two objects s1 and s2 of students and access all properties of

Student class to print all data.

//Stest.java: Write a program to create a class Student with data ‘name, city and age’ along
//with method printAll
//to display the data. Create the two objects s1 and s2 to declare and access the values.
class Student
{
 String name, city;
 int age;
 static int m;
 void printAll()
 {
 System.out.println(" Name : "+name);
 System.out.println("City : "+city);
 System.out.println("Age : "+age);
 }
}
class Stest
{
 public static void main(String args[])
 {
 Student s1=new Student();
 Student s2=new Student();
 s1.name="Komal"; s1.city="Gujrat";

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.3

 s1.age=26;
 s2.name="Monika"; s2.city="Kolkata";
 s2.age=22;
 s2.printAll(); s1.printAll();
 s1.m=20; System.out.println("(1) s1.m = "+s1.m);
 s2.m=25;
 Student.m=22;
 System.out.println("(2) s1.m = "+s1.m);
 System.out.println("(3) s2.m = "+s2.m);
 System.out.println("(4) Student.m ="+Student.m);
 }
}
OUTPUT:
Name : Monika
City : Kolkata
Age : 22
 Name : Komal
City : Gujrat
Age : 26
(1) s1.m = 20
(2) s1.m = 22
(3) s2.m = 22
(4) Student.m =22

Discussion: in this example how to create a class and an object from that class is

demonstrated. Here, two objects, s1 and s2, are created for two student‟s particulars.

Objects like s1 and s2 are initiated with memory block by the instruction as „Student

s1=new Student()‟ ; object s1 is created by first command of left-side, and the

commands of right-side created a memory block as required by the object s1,

memory block is also linked with s1. Here, Student() is the default constructor.

When we declare static as a variable, that is a unique variable name and will not be

created within multiple objects but the value of all samples are same. Value of static

variable will not be changed. Here, if we observe within this example at last four

lines, when we change value of m, it reflects changes within all samples of m of all

objects. It proofs that value of m is only one value as it is static. But, when we

assigned different values within different samples of m it did not make any

compilation error. As shown below, there are three values are assigned within s1.m,

s2.m and Student.m, but when we print we get the last assigned value for all three

samples:

s2.age=22;
 //s2.printAll();
 //s1.printAll();
s1.m=20; //System.out.println("(1) s1.m = "+s1.m);
s2.m=25;
Student.m=22;

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.4

Reuse of Class file:

It is the best practice of programming to design and write all code as module wise. It

is called modular designing. Now-a-days, all designing are of module based design.

As an example, in building of apartment, modular and sliding windows can be used

in any flat-apartment. An engine is an assembled thing of many small modules, a

motor cycle is an assembled bike, a bridge is made assembling some small modules,

a software is developed wiring small units. This is the basic concept of modern

structured engineering.

JAVA is a fully class based structured programming language. The modules created

now, can be reused in other programs. In programming, using of some module or

portion of coding to other program is known as reuses of program. Here, an example

is shown where a class “Doctor.class” is created and is reused within other program

of “UseDoctor.java” which will get access of all properties of the Doctor.class

module. The both programs are shown below:

Problem: wap to create a class by name „Doctor.java‟ having some methods and

variable, make a class file as Doctor.class. Then create another program

„UseDoctor.java‟ which will call the Doctor.class and access methods of that class.

//Doctor.java: only a class is created, but, there is no main() method.
public class Doctor
{
 private int patient;
 public int getPatient()
 {
 return patient;
 }
 public void setPatient(int numPatient)
 {
 patient = numPatient;
 }
 public void CallDoctor()
 {
 System.out.println("Please wait, Doctor is coming:");
 }
}

This program „Doctor.java‟ is compiled and „Doctor.class‟ is generated. Let us see

the second program.

//UseDoctor.java: this program uses the previously created and compiled ‘Doctor.class’ file
import java.util.*;
public class UseDoctor
{
 public static void main(String[] args)
 {
 int number;
 Doctor aDoctor = new Doctor();
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter number of patients waiting for the Doctor ");
 number = keyboard.nextInt();

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.5

 aDoctor.setPatient(number);
 System.out.println("Patients: " + aDoctor.getPatient()+ " are waiting for
 Doctor");
 aDoctor.CallDoctor();
 }
}

OUTPUT:
E:\example>java UseDoctor
Enter number of patients waiting for the Doctor 15
Patients: 15 are waiting for Doctor
Please wait, Doctor is coming:

Discussion: In this program, „UseDoctor.java‟ uses „Doctor.class‟ which is residing

in the default directory and used in this way:

Doctor aDoctor = new Doctor();

This class creates an object by name „aDoctor‟ and also initiated. It will search the

class within the present program, if not fount, then search within the hard disk, when

found, it will read and load within the computer memory. Note that the

„Doctor.class‟ has three methods as: getPatient(), setPatient(int numPatient) and

CallDoctor(). These three methods are called from the caller program

“UseDoctor.java” in this way:

aDoctor.setPatient(number);

This method „setPatient()‟ was declared within the class „Doctor.class‟ and accessed

from the object „aDoctor‟. It should be noted that „aDoctor‟ is an object but not

derived Class. Always, parameters and methods of a class are accessed from an

object not from a class.

But, note that the „patient‟ variable is declared as private identifier, so, this variable

is not visible within other class. To test this theory, within the „Doctor‟ class we have

assigned value as:

private int patient=10;

and then tried to access the value of „patient‟ variable from „UseDoctor.java‟

program writing the extra line at the rightmost position as „aDoctor.patient‟ to verify

whether the private variable of „Doctor‟ can be accessed from another class or not.

When we compile the program „UseDoctor.java‟, we get this error message clearly

mentioning that it is declared as private. Please, check the error message:

UseDoctor.java:12: error: patient has private access in Doctor
 System.out.println("Patients : " + aDoctor.getPatient() + " are waiting for Doctor"
+aDoctor.patient);
 ^
1 error

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.6

Inheritance:

It is the property of creating a child class from a father class. When a new class is

generated from another class, the properties of the father class are inherited within

the child class as per some conditions. For making understanding easier we have

used the terms „father‟ and „child‟ but, in the technical world, these two terms are

denoted by „Super‟ and „Sub‟. A super class can extend sub class and a sub class can

extend another sub class. Multiple inheritance is not supported in JAVA as it is

supported in C++. In Java, sub classes can be created from only one super class but

not from multiple super classes. Java has no options to inherit from multiple parent

classes. In human life, characteristics of father and mother may be inherited within

the characteristic list of the child, but in Java it is not true; subclass can be created

from only one super class, so, child class get all characteristics of super class except

private characteristics.

Fig. 5.1. graphical representation of inheritance of Java. Left-figure shows correct forms of

multiple inheritances where the right-figure shows wrong inheritance in JAVA.

In the figure- it is shown that the Class „A‟ can create another class „B‟ and „B‟ can

create „C‟; advantages of the class „C‟ is that it has access of all properties of „B‟ and

„C‟ except private properties. This is the advantages of inheritance that the methods

present within A and B are usable from C. But, the figure shown in right side, C

can‟t inherit from A and B at a time from two super class; which is not allowed in

JAVA. A child class or a derived class is created by keyword „extends‟ as:

class B extends A

{

 ……

 ……

}

Here, a new class „B‟ is created from superclass „A‟ where this new class „A‟ will

inherit all properties of class „A‟. In the same way, another child class „C‟ can be

generated from class „B‟ what is shown in left-figure of Fig.5.1 known as multiple

inheritance.

In next example, a new class „PetAnimal‟ is created from the superclass „Animal‟.

A

B

C

A B

C

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.7

class PetAnimal extends Animal

{

….

….

}

The Superclass or Parent-class or Base class these are the three terms used to mean a

Base Class, example is „Animal‟ class shown above.

When is it required to create Derived Class? Answer is- if it is required to create a

class which is similar to anyone of existing class, then, it is required to derive a new

class from existing class. The new class may have extra features or properties than to

Base class.

Fig. 5.2. Concept of Inheritance of properties from parent Class. This figure shows how to create a

new class from parent class and then how to create objects from derived class

Problem: wap to create a class „Animal‟ with a protected variable and a public

method; create child class „PetAnimal‟ from „Animal‟ and then show the properties

of inheritance rules of private, protected and public variables/methods.

Animal Class name

Variable declarations
Constructor

User defined method

cat : Object name

Object name: dog

PetAnimal

derived Class name

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.8

//PetAnimal.java: demonstration of Inheritance

class Animal

{

 //private String color1 = "Has no fixed color...";

 protected String color1 = "Has no fixed color...";

 public void color()

 {

 System.out.println(" Animal has no fixed color.");

 }

}

//creating another class ‘PetAnimal’

class PetAnimal extends Animal{

 private String color2 = "May be white or black or mixed"; // Car attribute

 public static void main(String[] args)

 {

 PetAnimal dog = new PetAnimal();

 PetAnimal cat = new PetAnimal(); // not used cat object here.

 System.out.println("Test of inheritance...");

 dog.color(); //calling public method

 System.out.println(dog.color1); //calling protected variable color1

 System.out.println(dog.color2);//calling private variable of same class

 }

}

OUTPUT:

Test of inheritance...

Animal has no fixed color.

Has no fixed color...

 May be white or black or mixed

Discussion: here one inherited class PetAnimal is created from the super class

Animal. Sub class gets all properties inherited from the super class as: variable

color1 and the method color(), these are the two properties declared within Animal

class which are accessible from the object of child. Advantage of inheritance is that

the sub class need not to create new properties like: „color1‟ and color() again as

these properties are inherited to the subclass and it can use those properties as it‟s

own. (It is like social life- as properties of Grand Father and Father as example

Land, Home, Gold etc. are the properties of child/grandson also).

Rules of Inheritance: if any variable or method is declared as public or protected

then it is inherited as usual i.e. public will be inherited as public, protected will be

inherited as protected. Public method or variable is accessible from other package

also; protected method or variable is accessible within the same package and same

class. But, private property of parent class will not be inherited to the child class.

Inherited class (object) has no access over the private property of parent class. As

example, if we declare the variable as:

 private String color1 = "Has no fixed color...";

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.9

Then, „color1‟ will not be inherited within child and also not accessible from the

object of the subclass. To test this theory, in the above program, if this line is

activated by deleting „//‟ signs and blocking the next line as:

 //protected String color1 = "Has no fixed color...";

then compile/run the program it will show error as:

“petAnimal.java:18: error: color1 has private access in Animal”

 System.out.println(dog.color1); //from parent class

So, the theory we have learnt that „the private property of super class does not inherit

to the sub class‟ is also proved by this example.

//RoomVol.java: Class inheritance
// decision making statements if..else
class room
{
 int ll, bb;
 room(int x, int y)
 {
 ll=x; //length
 bb=y; //breadth
 }
 int area()
 {
 return ll * bb; //area
 }
}
// new class is inherited from another class room.
class mainroom extends room
{
 int ht;
 mainroom(int x, int y, int z)
 {
 super(x, y);
 ht=z;
 }
 int volume()
 {
 return(ll * bb * ht);
 }
}

class RoomVol
{
 public static void main(String args[])
 {
 mainroom r1= new mainroom(10, 12, 8);
 int ar=r1.area();
 int vl=r1.volume();
 System.out.println(" Room area = " + ar);
 System.out.println("Volume of the room = " + vl);

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.10

 }

}

OUTPUT
Room area = 120
Volume of the room = 960

Discussion: in this example, first, a class „room‟ is created and within that room a

constructor „room()‟ is created. It is noted that constructor „room()‟ has no data type;

it assigns some values only. Within this class „room‟ another method is constructed

by name „area()‟ as integer type return data; it returns integer type of value after

computing the line as: “return ll * bb;” . The class „room‟ has two main methods –

one is „room()‟ as constructor and another is „area()‟ having return type integer. The

method is of integer data type meaning that the result will be computed by this

method will be within the range of integer data. If any variable is assigned to hold

that result that should be integer type also.

Next, another class „mainroom‟ is created from the class „room‟. This way of

creating a class is, extending from another class, known as creating child class from

father class. Class „mainroom‟ has created a constructor by name „mainroom‟ having

no datatype. When this class will be invoked from any instances of the class/object,

this constructor „mainroom‟ will be executed automatically and then other jobs will

be executed. Class „mainroom‟ has a method by name „volume‟ which is of integer

datatype and return the volume of the room. Any numbers of methods or variables

can be declared within the class.

Then, the class „RoomVol‟ is created which contains „main()‟ method. The below

line-

mainroom r1= new mainroom(10, 12, 8);

 is the combination of two statements like:

 mainroom r1; // an object is created by name r1
 r1 = new mainroom();// an instance r1 is created and memory is allocated as same size of
‘mainroom’ class
int ar =r1.area(); // variable ‘ar’ is assigned with the value of r1.area()

Careful observation to the above program will show that class „mainroom‟ is the

child of super class „room‟ and has no method „area()‟ which is a method of super

class „room‟; here, it is required to mention is that properties of super class is

inherited within the sub/child class. So, when an object „r1‟ is created from

„mainroom‟, that object contains all properties of the class of „mainroom‟. The

instance of object has all access rights to the variables and methods of the class.

*The details of inheritance of properties are available in the referred books as

mentioned in reference sections.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.11

Creating multilevel inheritance:

JAVA does not support multilevel inheritance, but there is an alternate way of

accessing properties of multiple classes through the keyword „implements‟. Through

interfaces with an existing class (name as interface), properties of dual super classes

can be accessed using implements keyword as the example shown below:

public class PetAnimal extends Animal implements WildAnimal

{

 //work with methods of Animal

….

….

 //work with interface of WildAnimal

 public void food() //method of PetAnimal

 {

 //input weekly food amount

 }

}

Discussions: in this example, a new class „PetAnimal‟ is created from super class

„Animal‟ again this new class inherits properties from the interface „wildAnimal‟. An

interface is like a class which is created by the keyword „interface‟ and generally

declares some variables or methods within it but methods are not constructed within

the interface. An interface is connected with a class by keyword „implements‟ as

shown in the example of above. An existing class also can interface with an interface

like „WildAnimal‟.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.12

Multiple Choice Q & A

1. What is the role of this operator: <<

a. To scroll one character to left

b. To shift one bit to right side

c. To shift one bit to left side

d. None of the above.

2. When this symbols are used : []

a. For declaring arrays

b. For assigning arrays

c. For giving quotation marks at start and at ends of any string

d. For all of the above.

3. In a byte type of data(of 8 bits), maximum positive number can be store is:

a. 255

b. -256

c. -32768

d. 32767

4. In programming, which package is imported by default ?

a. java.io.DataInputStream

b. java.lang

c. java.util

d. java.awt

5. fillOval(int,int,int,int) is a method of which Class?

a. Thread

b. String

c. Graphics

d. JFrame

6. What is the best answer of this statement: final double width = 300; ?

a. Variable width is of double data type

b. Variable width is of declared as non-overloading by final identifier.

c. Data type of width is double and can‟t be declared in other classes or method

as it is final and value

 300 is assigned within width.

d. Data type is double of width, identifier is final meaning can‟t be overloaded.

7. If these two statements are given: Scanner in; String name = in.next(); and

from keyboard „Amal

 Kumar Khan‟ is inputted, then what is the contents of variable name?

a. Amal Kumar Khan

b. Amal Kumar

c. Khan

d. Amal

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.13

8. If these two statements are given as: int[] num; num = new int[10]; then,

which one is the best

 answer?

a. 10 arrays are created

b. 10 arrays are created as: num[0] ….num[9]

c. 10 integers are created by name int[10]

d. Both 10 num and 10 int are created

9. Which one the best answer ?

a. Constructor has no data type

b. Constructor is called when object is initiated.

c. Name of Class and the Constructor should be same

d. Above all are correct

10. This statement : DataInputStream din= new DataInputStream(System.in);

has the same effect if we write it in which way?

a. DataInputStream din=System.in;

b. DataInputStream din; din=new DataInputStream(System.in);

c. DataInputStream din new system.in;

d. DataInputStream din DataInputStream(System.in);

Ans: 1 (c), 2(a), 3(a), 4(b), 5(c), 6(c), 7(d), 8(b), 9(d), 10(b)

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

5.14

Link of PPT of this book and all source codes:

https://drive.google.com/drive/folders/1bMxMCaqPe0W35COAdn_-

BrnV_uzQ-tNO?usp=sharing

(Note: to get access, copy and paste this link to your browser)

Copyrights:@ All rights of this book chapter is reserved to the publisher, Applied Computer

Technology, Kolkata, India. No parts are allowed to reproduce in other book, media or publications,

but, are allowed to use for academic non-profit purposed. For any permission of reproduction, write to

info@actsoft.org, website: actsoft.org

mailto:info@actsoft.org

