
Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.1

Chapter 10

File Management, data saving,

data retrieving

Data File Creating:

Once we type something in computer, we need to store it in any storing media for

future uses. Data can be in the form of text, audio, video or in any other formats.

Different input instruments like Mouse, Microphone, camera, keyboard, scanner etc.

helps to input data into the memory of the computer. Basic concept is that – all input

devices produce analog signal of input data, it is then converted to digital signal,

then coded as zero and one, 010110…., then as per coding converted to

corresponding text which we see as data on the monitor of the computer. Data can be

sound signal and if it is within the range of 2 to 20KHZ , then it is audio signal and

our ear can hear that sounds. Camera produces Video data which is generally

represented as unit MP(Mega Pixel). Overall, the concept is that it may be in any

format either, text, audio or video, these are stored in a volatile memory or

Semiconductor based memory (known as Chip). If power is off, then these data are

lost. We need to store these data within permanent memory like Pendrive, Hard

Disk, CD, DVD etc. for future reference.

Within a data file, not only the texts are stored but, data of other formats like- audio,

video or picture files may be stored. In advanced database of Oracle, Foxpro, DB, all

of these types of data can be stored. Data are nothing but some bits stored within the

RAM of the computer, it has starting and ending address which we define as a

particular data. So, a portion of a song may be stored as a data, another portion of a

picture may be stored as picture data. But, these are advanced works of

programming.

A basic diagram of read/write of data to storage media is shown below:

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.2

Fig. 10.1. a diagram shows basic concept of read/write data to permanent storage device.

Data are stored in a file giving a name. Within any software the „File‟ menu do these

operations like- „Save-Open-Close-Delete etc.‟. In text file, data are simply stored as

per ASCII coded format. It is the simplest format of storing data. But, for other

formats of file, data are encoded as per coding scheme of the format. A file can be of

different types like: text, data, MSword, PDF, JPEG, WAV, MP4 formats etc. Using

program, we store or save data in a file following some encoding rule for future uses;

again we need to read those data, and display to the output devices. Output devices

are: monitor, printer, harddisk, speaker, ECG printer etc. Data Management is

another subject which deal about read, write, processing, security, reliability etc. of

data. Here, in this chapter, simple data file management will be discussed through

different programs.

Concept of Characters of Keyboard:

A data file contains characters which may be printable characters or non-printable

characters. A file can be an empty file also having no data inside. When we input

something, it is stored in a particular memory location of the RAM, and when we

complete typing or mark as end of data, that is also noted as last memory address of

the data. On the keyboard, there are various characters and each of the characters has

a ASCII (American Standard Code For Information Interchange) code number value.

When we press any character/symbol/function key, corresponding code value goes

into the computer through the software. For easy understanding, ASCII value of

capital letters A, B, C .. are 65, 66, 67 etc. and for small letters like: a, b, c, .. are 97,

98, 99 etc. for SPACE it is 32, for ESC it is 27 etc. A chart is given below

mentioning all ASCII values.

…..

…..

Data

…..

…..

Data file

RAM
Save data

read data

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.3

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.4

As theoretical discussion done, to read a file from Hard Disk(HD), a indicator is

required which points to the first character of the file residing within the HD or any

storage device, reads characters one by one and puts within the temporary memory

RAM. When characters are put within RAM, it also needs a file handler which can

manage starting location of first character and the other locations of data within the

RAM. In this way a planned system is developed to locate each of the characters.

But, users can‟t see the inside process of the computer, only the system architect

knows how they created the system internally.

The program shown below will read characters one by one and will print the

Hexadecimal code of the character and the same character in ASCII code.

//RDemo.java: demonstration of reading data from a text file. To run this program a

text file //demofile.txt is required.

import java.io.*;

public class RDemo

{

 public static void main(String [] args) throws IOException

 {

 Reader r = new FileReader("demofile.txt");

 int num;

 while ((num = r.read()) != -1)

 {

 //System.out.println(num +"\n");

 System.out.printf("ASCII code in Decimal is %d of %<c \n", num);

 }

 r.close();

 }

}

OUTPUT:

C:\example>java RDemo

ASCII code in Hexa Decimal is 41 of "A"

ASCII code in Decimal is 65 of "A"

ASCII code in Hexa Decimal is 42 of "B"

ASCII code in Decimal is 66 of "B"

ASCII code in Hexa Decimal is 43 of "C"

ASCII code in Decimal is 67 of "C"

ASCII code in Hexa Decimal is 44 of "D"

ASCII code in Decimal is 68 of "D"

ASCII code in Hexa Decimal is 45 of "E"

ASCII code in Decimal is 69 of "E"

ASCII code in Hexa Decimal is 46 of "F"

ASCII code in Decimal is 70 of "F"

ASCII code in Hexa Decimal is 47 of "G"

ASCII code in Decimal is 71 of "G"

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.5

ASCII code in Hexa Decimal is 48 of "H"

ASCII code in Decimal is 72 of "H"

ASCII code in Hexa Decimal is 49 of "I"

ASCII code in Decimal is 73 of "I"

ASCII code in Hexa Decimal is 4a of "J"

ASCII code in Decimal is 74 of "J"

…..

……

Discussion:

To run this program, we have to create a data file „demofile.txt‟ and put

“ABCDEFGHIabcdefghi” within this text file. This program will read each character

separately from the data file „demofile.txt‟ and then print the ASCII values of those

characters. As example, we have put first ten capital and small alphabets; user may

put any characters and check the value comparing with the value mentioned in the

ASCII charts given above.

Extra work: it is suggested to change the print line as mentioned below, save and

run the program, you will get only the ASCII numbers.

System.out.println(num +"\n");

If you look at the program, data was read from the data file using the method

r.read() where „r‟ is the object of the class Reader. This method reads individual

characters from the data file and returns the corresponding ASCII value of that

character. This theoretical concept is demonstrated from the line as mentioned

below:

System.out.printf("ASCII code in Decimal is %d of %<c \n ", num);

If we want to print hexadecimal numbers, then, %x to be given instead of %d.

Conversion of decimal number to hexadecimal number is as shown below:

(65)10 = (41)16

(66)10 = (42)16 etc.

Decimal number is divided by 16 to get hexadecimal number. As example, if 65 is

divided by 16, quotient is 4 and remainder is 1, so (41) is the hexadecimal number.

Creating data file:

There are some differences between text file and data file. Text file is the simplest

form of coding of digital bits to ASCII characters. ASCII text file can be visible by

any text reader/editor. But, data file is the encoded form of text and can‟t be visible

by other text or word editors. But the decoder of the same system can read the data.

Advantages are that generally unauthorized person can‟t view contents of data. In the

program below, a marks data file is created automatically to input 15 marks in a data

file, JAVA encodes the system, so, it will not be possible to read data by any text

editor. Because, text editor does not know the encoding scheme of conversion of

data.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.6

//Wdata2.java : When you write any data- should remember the type of data was

//saved.

// when read data from the same data file should read as the same data type.

import java.io.*;

class WData2

{

 public static void main(String[] args)

 {

 File in= new File("marksRND.dat");

 //DataInputStream din=null;

 DataOutputStream dout=null;

 try

 {

 dout=new DataOutputStream(new FileOutputStream(in));

 for(int i=0;i<15;i++)

 {

 dout.writeInt((int)(Math.random()*100));

 }

 }

 catch(e)

 {

 System.out.println(e.getMessage());

 }

 finally {

 try {

 dout.close(); }

 catch(IOException e){}

 }

 }
}

OUTPUT: nothing will be displayed but, it will create a new data file

„marksRND.dat‟ with 15 marks as encoded form. To see what are stored within the

data file, if we try to display as:

E:\example>type marksRND.dat

O01^`↔7#G@RB3B▬

Discussions: When data file is tried to print, we see some characters are displayed

but no numbers are printed. How can we be ensured that data were stored properly?

As theory discussed before that text editor can‟t display encoded data. That is

happened in this case. The DOS command „type‟ can display contents of text data

only, so, when tried, it displayed garbage output. The package „java.io‟, known as

input-output package, contains all classes and methods to handle input-output jobs.

There are two classes „DataInputStream‟ and „DataOutputStream‟ which contain all

necessary methods, constructors to handle data input-output jobs. This is known as

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.7

„read-write‟ of data. As this program is the example of data saving or writing to HD,

only the class „DataOutputStream‟ is used here. Which data are saved? If you look at

the line shown below, it has two sections: one is writeInt() and the other is

Math.random():

dout.writeInt((int)(Math.random()*100));

The random() method creates decimal numbers >0 and <1, i.e. it creates numbers

between zero and one, but never equal to zero or equal to one. As example:

0.68 * 100 = 68

0.79 * 100 = 79

It is the logic why we multiplied by 100.

At end of the above program, Exception handler is used. Generally, for any input-

output jobs, some common errors may happen as: keyboard, mouse, scanner etc. are

damaged or output devices like: HD, CD, DVD, soundbox, printer etc. are damaged

then exception error may be generated. Other exception errors are: data type

mismatching, read-write abnormal errors etc. To manage these errors and to display

information about the errors, try{ } and catch{ } error handlers are used. The class

IOException contain all necessary information to manage exceptions.

//WriteData2.java: When you write any data- should remember the type of data.
// when read data from the same data file should read as the same data type.
import java.io.*;
import java.util.Scanner;
class WriteData2
{
 public static void main(String[] args)
 {
 File in= new File("marks2.dat");
 DataOutputStream dout=null;
 Scanner inp = new Scanner(System.in);
 int p;
 try
 {
 dout=new DataOutputStream(new FileOutputStream(in));
 for(int i=0;i<5;i++)
 {
 System.out.print("\n Input Total Mark: ");
 p = inp.nextInt();
 dout.writeInt(p);
 }
 }
 catch(IOException e)
 {
 System.out.println(e.getMessage());
 }
 finally
 {
 try
 {
 dout.close();

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.8

 }
 catch(IOException e){}
 }
 }
}

OUTPUT:

Input Total Mark: 650

 Input Total Mark: 765

 Input Total Mark: 680

 Input Total Mark: 820

 Input Total Mark: 723

Discussion: when this program is run, it stores 5 numbers in the data file

marks2.dat. After that for checking what it has stored within the data file, we see

some non-readable characters are displayed. Program has done correct job, if we

want to see data, we have to write another program for reading data from the data

file. Java writes data as encrypted way having not to be read by any text editors.

How the data is encrypted that logic remains within the compiler and user does not

know that. Any file contains some header bytes of information of type of file, size,

encryption, location of stored memory, user of file etc., then, next part is the data

section stored as encrypted way.

As an example, we tried to see data by typing the name of the data file but, found

some non-readable codes.

E:\example>type marks2.dat

☻è☻²☻¿♥4☻╙

E:\example>

Here, it is also proved that JAVA stored data in a file by encoding data to another

form. When a file is created it contains header block where some information of the

file are recorded. Generally, header block contains name of file, size of file, starting

location in the storage device, encoding name or pattern etc. These information

varies from software to software, as example, header block of MSWORD, notepad,

MATLAB, ORACLE, C++ etc. are different.

Reading Data File:

Using program, if we like to read a file or open a file, we have to be confirmed that

the file is existing in the storage device by name C:, D:, E: etc. So, name of the file

with extension name should be mentioned. Extension name(.doc, .dat, .java, .class,

.xls etc.) is the type of file. The main point to understand is that JAVA can read/open

a file which is created by JAVA programming.

An important question is that- why can‟t particular software read files of other

software? As example, MATLAB can‟t read ORACLE data file or MSWORD can‟t

read MATLAB file etc. The reason behind is that the information stored within the

header block of the file is known by that software only, so, it can‟t read data of other

software.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.9

Below, a program is shown to read a data file which was created by JAVA by our

previous program. In previous program „marks2.dat‟ data file was created and that is

existing in the current location of the current drive of the computer. So, with the

name of data file, the name of path is not required to mention. Because java searches

the file in the default drive, we could mention as: „C:\example\marks2.dat‟ also.

//ReadData2.java: When you write any data- it stores type of data also.
// When you read data from the same data file- should read as same data type.

import java.io.*;
class ReadData2
{
 public static void main(String[] args)
 {
 File in= new File("marks2.dat");
 DataInputStream din=null;
 //reading data from the data file
 try
 {
 din=new DataInputStream(new FileInputStream(in));
 for(int i=0;i<15;i++)
 {
 System.out.println(din.readInt());
 }
 }
 catch(IOException e)
 {
 System.out.println(e.getMessage());
 }
 finally
 {
 try
 {
 din.close();
 }
 catch(IOException e){}
 }
 }
}

OUTPUT:

650

765

680

820

723

Discussions: in this program, din.readInt() reads each integer numbers from the

data file and displays on the screen. Five numbers were stored in the data file and

giving a loop of 5 times, all five numbers are read. If more numbers are tried to read,

it will give error message as null which indicates end of file. In the same way other

types of data like: long, short, double, float, String etc can be stored and read also

using the same logic. This is the basic concept of handing data file. There are some

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.10

other operations like, insert, delete, append and edit operations on data file and will

be discussed later.

Home work: above two programs were written for integer types of data. You can

edit those two programs for float or other type of numbers.

Read-Write operations:

In previous examples, single read or write operation was demonstrated in a single

program. When we write or save some data, we need to know whether data are saved

properly or not. Using text editor we can‟t see data file saved by JAVA program; we

need to take help of reading program which can read data from data file. Both the

jobs are demonstrated by the program shown below. First some data are saved and

then those data are read and displayed.

//RWData3.java: both the write and read jobs are in a same program.
// if data is saved as integer, at the time of reading data it should be integer also.

Import java.io.*;
class RWData3
{
 public static void main(String[] args)
 {
 File in= new File("marksRND.dat");
 DataInputStream din=null;
 DataOutputStream dout=null;
 try
 {
 dout=new DataOutputStream(new FileOutputStream(in));
 for(int i=0;i<5;i++)
 {
 dout.writeInt((int)(Math.random()*100));
 }
 dout.close();
 // data storing into data file is complete.
 //now read those data
 din=new DataInputStream(new FileInputStream(in));
 for(int i=0;i<5;i++)
 {
 System.out.printf(din.readInt());
 }
 din.close();
 }
 catch(IOException e)
 {
 System.out.println(e.getMessage());
 }
 }
}

Discussion: In this program, first we have stored 5 numbers of random numbers

generated by Random() method , stored it and closed the file handler „dout‟. Then

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.11

we started another file input handler „din‟ for reading those numbers. As it is known

that there are 5 numbers so we added another loop to read those 5 numbers one by

one. Output of the program is:

E:\example>java RWData3

75

69

98

67

25

Home work: for input numbers, we used random number generators, instead of that,

edit this program to input numbers from keyboard and save in the data file, read and

display those numbers.

Text data read-write operation:

In previous examples, numerical data input-output operations are demonstrated.

Generally data saving to hard disk is known as output operation and reading data

from hard disk is known as input operation. In default drive, we have put a text file

„data1.txt‟ which will be read one by one for all characters and will be written to the

second file „data2.txt‟ one by one. There are two file handlers „Fi‟ for input and „Fo‟

for output respectively. The „read()‟ method reads characters one by one and when

reaches at end of the file then it returns „-1‟ meaning nothing to be read. Till „-1‟ is

not faced, the read character from the file „data1.txt‟ is written to „data2.txt‟ file, in

this way all data will be saved to the second data file and a new files will be created.

It looks like copy the contents of a file to another one by another name.

//FileRW.java: a program to work on File operation. In this program

// techniques of open, read, write and close a data file are demonstrated.

import java.io.*;

class FileRW

{

 public static void main(String[] args)

 {

 File Fi= new File("data1.txt");

 File Fo= new File("data2.txt");

 FileReader in1=null;

 FileWriter out1=null;

 try

 {

 in1=new FileReader(Fi);

 out1=new FileWriter(Fo);

 int p;

 while((p=in1.read()) != -1)

 {

 out1.write(p);

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.12

 }

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 finally

 {

 try

 {

 in1.close();

 out1.close();

 }

 catch(IOException e){}

 }
 }
}

OUTPUT:

Before running the program, we have put these contents within „data1.txt‟ file and

after running the program, the contents of „data2.txt‟ file is displayed below. It is

shown that all contents are copied within the „data2.txt‟ file.

Contents of “data1.txt” source file is:

Democracy is the standard mode of governing the country. How Democracy will be

practiced, played and exercised that depends on the leaders of the country. Now a

days, most of the governing rules of the country are created by the members of the

Parliament.

Contents of “data2.txt” file after running the program:

Democracy is the standard mode of governing the country. How Democracy will be

practiced, played and exercised that depends on the leaders of the country. Now a

days, most of the governing rules of the country are created by the members of the

Parliament.

Discussions: Any file operation is controlled by file handler as:

File Fi= new File("data1.txt");

It has created an indicator „Fi‟ to handle the exiting file „data1.txt‟, but not

mentioned whether this handler will be used for reading or writing purposes. For that

„in1‟ object is created with null data.

FileReader in1=null;

In that way, for writing purposes another two „Fo‟ and „out1‟ are created and the

technique of using can be seen within the program shown above. Advanced

operations of try{}, catch{}, IOException etc. are important for any input-output file

operations.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.13

File operation with Arrays:

Before, read-write operations with numerical and character types of data were

discussed. Data contents may be stored within array and that one can be saved at a

time resulting all data within the array will be saved within the data file. Advantage

of using array in this case is that as array name is a single variable, read-write

operation will be by name of array and all elements will be saved at a time.

//FileW.java: an array contains three names and saved in data file.

//all characters present in array are stored in a text file 'list.txt'.

import java.io.*;

class FileW

{

 public static void main(String[] args)

 {

 byte names[]={'G','A','N','D','H','I','\n','I','N','D','I','R','A','\n','M','O','D','I','\n'};

 FileOutputStream out1=null;

 try

 {

 out1=new FileOutputStream("list.txt");

 out1.write(names);

 out1.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 }

}

OUTPUT:

Using notepad or any text editor, you can see contents of text file

Contents of “list.txt” file is:

GANDHI

INDIRA

MODI

Discussions: in this program, careful observation to the contents of the array

„names‟, you will see, after each name a „\n‟ escape sequence for a new line is

inserted. This is for new line and effect can be seen in output and three names in

three different lines. As data will be stored (output) in text file, we created a file

handler „out1‟ and writes data as:

out1.write(names);

When saving of data is finished, we should close the file as:

out1.close();

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.14

It is a standard practice to close a file if opened once. Because, a file handler

occupies some memory, if closed, that memory is released for other operations. If

exception handler catches any unusual events, it will exit the JAVA virtual machine

to the operation system. It means that program will exit unusually without returning

any value. The statement

System.exit(-1);

will exit from java program but, not from operating system. If exit(n) where n is any

integer number, then the program will terminate normally.

Now, another example shown below which will read a text file from the default drive

and print on the screen. The read() method reads data till last character, when end of

file is reached it returns „-1‟ and the loop of reading characters one by one stops. To

run the program, a text file say „list.txt‟ should be present in default drive.

//FileRead.java: a program to read all characters from a text File.

import java.io.*;

class FileRead

{

 public static void main(String[] args)

 {

 FileInputStream in1=null;

 int p;

 try

 {

 in1=new FileInputStream(args[0]);

 while((p=in1.read()) != -1)

 {

 System.out.print((char) p);

 }

 in1.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 }

}

OUTPUT:

Compiling the program:

E:\example>javac FileRead.java

To run this program, we have to mention a data file name from which all data to be

read. In this example, “list.txt” is the data file and to be given as the command line

argument as shown below. Kindly, note that “list.txt” file was created by previous

program and we assume that some text is available within that file.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.15

Execute the program with argument zero as the name of text file:

E:\example>java FileRead list.txt

GANDHI

INDIRA

MODI

BIDEN

Discussion: if we look at the program, we will see there is a line

in1=new FileInputStream(args[0]);

where „args[0]‟ is the name of the text file „list.txt‟.

What is this parameter argument? Our program is „FileRead‟ and it takes „list.txt‟ as

first argument which is considered as the first input file to the program „FileRead‟.

Here, arg[0] is the “list.txt”. As we want to read data from a text file, this job is

known as input job meaning is that computer will input data to memory variable

reading from the text file. So, it is known as input job; anyway if we fill computer

memory that is known as input and from computer memory if we write or print to

other devices(printer, HD, Soundbox, monitor) is known as output job.

Let us look at this statement:

FileInputStream in1=null;

Here, „FileInputStream‟ is the class name available under the package „io‟ and it

reads streams of byte from the source. The object „in1‟ is created and assigned with

null data. The object is just created as a valid object and then it is made workable as:

in1=new FileInputStream(args[0]);

By this statement „in1‟ is the object handler(or pointer) which locate the memory

starting position from where the byte stream will be managed within the memory.

Here, args[0] is the text filename provided in front of the program; if we put other

names in front of the program as:

FileRead list.txt abc.txt xyz.txt

Then, arguments are like this: args[0] = list.txt, args[1]=abc.txt and agrs[2]=xyz.txt

Arguments are like variables and can be used anywhere within the program as a

variable name.

Another tricky statement used in this program is:

while((p=in1.read()) != -1)

{

…

}

The read() method reads a character and returns its ASCII value, so, the parameter

„p‟ contains a number or when it goes at end of file it returns „-1‟.

The logic of this statement is that if parameter value of while() is integer number

then the loop will continue, but, if it is negative number as while(-1) then, the loop

will exit. The concept is as:

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.16

while(0) ; loop will continue

while(1); loop will continue

……..

while(n); loop will continue

while(-1); loop will exit to out of loop

Another important statement is:

System.out.print((char) p);

Here, first the ASCII number of „p‟ is converted to its corresponding character by the

conversion statement „((char) p)‟; so, as output we shall see the characters on the

screen as shown in output of the program.

Creating data file with different data types:

In our real life, we need to store data of different properties of an object in a data

file. As example, marks sheet of students where name, marks, date, pass or fail etc.

different types of data are required to save in a same file. To develop that concept,

here, below, a program is shown which will write different types of data in a data file

and then it will read all those data and print on the screen. The main point to follow

is that sequence of writing data, i.e., if we write integer, double, Boolean, character,

by this order, at the time of reading data we have to follow the same sequence i.e.

integer, double, Boolean, character. A graphical representation of storing data in

magnetic devices(HD, FD, Tape) is shown below. First data is stored in RAM of

computer and then saved within the Track and sectors of a Hard Disk or any

magnetic plate.

Now a days, uses of magnetic devices are decreasing and uses of Chips are

increasing. Chips are used in ATM card, SIM of mobile phone, internal memory and

SD card of mobile phone, RAM/ROM of Laptop etc. Very soon magnetic devices

will be abandoned due to old technology and semiconductor based memory storage

will be everywhere of electronic instruments. Pen drive is mostly used in computer

as data storage device. Chip is an array of very small cells which can‟t be seen in

eye. It is like Bees hub, small cells arranged in rows and columns and there are

Read-Write lines connected with all cells as shown in next figure.

RAM

Magnetic Storage Device

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.17

Now, in this example, a data file is created, then file handler is created to write and

read data to/from that data file. Different types of data can be saved separately and

demonstrated in this example. But, the sequence of writing data should be

maintained at the time of reading data, it means, as example, if we write data of

different type as: int, double, Boolean and char; then, at the time of reading data

from the file, it should be int, double, Boolean and char. This sequence is important

else, data will be corrupted. The technique of writing data is using a write method as

writeInt() and reading an integer is readInt().

//FileRWall.java: to write different types of data in a same data file and then read all

those //data from the file and close the data file.

import java.io.*;

class FileRWall

{

 public static void main(String[] args) throws IOException

 {

 File in= new File("marks2.dat");

 FileOutputStream Fo= new FileOutputStream(in);

 DataOutputStream dout= new DataOutputStream(Fo);

 //Now writing data to the data file 'marks2.dat'

 dout.writeInt(2021);

 dout.writeDouble(4532.72001);

 dout.writeBoolean(true);

 dout.writeChar('D');

 dout.close();

 Fo.close();

 //reading data from the data file 'marks2.dat'

 FileInputStream fin=new FileInputStream(in);

 DataInputStream din=new DataInputStream(fin);

 System.out.println(din.readInt());

 System.out.println(din.readDouble());

RAM

Chip Storage Device
(Semiconductor device)

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.18

 System.out.println(din.readBoolean());

 System.out.println(din.readChar());

 din.close();

 fin.close();

 }

}

E:\example>java FileRWall.java

20

32.7

true

D

Discussion: when we run this program, always a new file is created by name

„marks2.dat‟, if previous data exists, that will be deleted and a new file will be

created. It is a data file, not a text file, and the data are stored by the program can‟t

be seen by other text editor. Only program can read those data and display on the

screen for the user. By careful observation of this example, you will see, for handling

data another object „dout‟ is created as:

DataOutputStream dout= new DataOutputStream(Fo);

In this present program, file creation class „FileOutputStream‟ created file handler

and data creation class „DataOutputStream‟ created data handler. Printing data on the

screen is done by the method „println()‟ as:

System.out.println(din.readBoolean());

Here, first, „readBoolean()‟ reads the data from the hard disk and store in RAM with

the data handler „din‟ meaning that it keeps track of location of this block of data in

RAM and then using the method „println()‟ it can display data on screen. Two jobs

are performed by this way one is reading data and the other is printing data.

And the difference with creating text file is that this line was not in previous program

„FileRW.java‟ where we created read/write operations on text files.

Lab Work: edit the above program for changing sequence of storing different data

and then read those data.

Stream of Data:

Streaming is a concept of continuous flow of data. It means without ending, the

system will try to read data till end and also output data till end. But, in text read-

write, data are read as a character, system controls start and end of reading of a

character(i.e. 8 bits at a time), but, in stream flow, or sequence of reading-writing,

data is a flow of bits not as characters. What do we mean flow of bits? In a

generalized way, the concept is that when a song is sung, microphone produce

electric signals, that signal is processed within electronic instruments and again

sequences of signals are passed into the sound box. This flow is like a stream of

wave, a continuous flow which is known as stream of data.

The concept of streaming of data is tried to explain with a figure as shown below:

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.19

But, instead of audio-video signals, if characters are streamed, technology is same,

coded signals flow as stream. Here, in this program two classes like

„SequenceInputStream‟ and „BufferedInputStream‟ are used to perform streaming

concept. First, two text files are created with some texts as shown below. There are

two stream handlers „inB‟ for reading data from files and „outB‟ for writing on

screen.

C:\example>type data11.txt

Different phases of JAVA Programming: In Level-1: introduction, variables, identifiers,

tokens, statements, constants, variables, different data types- integer, floating number,

character data types, Boolean etc. with examples. How to display some text on Screen, print

on new line etc. Then declaring variables of different data types, input data, display those

data.

C:\example>type data22.txt

Different phases of JAVA Programming: In Level-2: Decision making and grouping of

decisions, if ...else.., switch statement, ternary operator, ?: operator, breaking from the

group, close the switch statement. Different Loop statement: while, do.., for..etc.

Concept of Class, object, instances etc.

//FileBuffer.java: concatenating two files through bufferstream.
// it is one type of appending data of 2nd file with 1st file.

import java.io.*;
class FileBuffer
{
 public static void main(String[] args) throws IOException
 {
 FileInputStream f1=null;
 FileInputStream f2=null;
 //a new file f3 is declared
 SequenceInputStream f3=null;
 f1=new FileInputStream("data11.txt");
 f2=new FileInputStream("data22.txt");

Concept of streaming data

 01110001100 1010001110

Electro

nic

Instru

ment

Data stream Data stream

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.20

 f3=new SequenceInputStream(f1,f2);
 BufferedInputStream inB=new BufferedInputStream(f3);
BufferedOutputStream outB=new BufferedOutputStream(System.out);
 int ch;
 while((ch=inB.read()) != -1)
 {
 outB.write((char)ch);
 }
 inB.close();
 outB.close();
 f1.close();
 f2.close();
 }
}
OUTPUT:

C:\example>java FileBuffer

Different phases of JAVA Programming: In Level-1: introduction, variables,

identifiers, tokens , statements, constants, variables, different data types- integer,

floating number, character data types, Boolean etc with examples. How to display

some text on Screen, print on new line etc. Then declaring variables of different

data types, input data, display those data.

Different phases of JAVA Programming:In Level-2: Decision making and grouping

of decisions, if ...else.., switch statement, ternary operator, ?: operator, breaking

from the group, close the switch statement.

Different Loop statement:while, do.., for..etc.Concept of Class, object, instances etc.

Discussion: to test this program, first two data files should be filled with some text

data. Hierarchy of BufferedInputStream and BufferedOutputStream are as:

Hierarchy of SequenceInputStream is shown below:

InputStream

 FileInputStream

 FilterInputStream

 BufferedInputStream

OutputStream

 FileOutputStream

 FilterOutputStream

 BufferedOutputStream

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.21

The class SequenceInputStream reads from any standard source till end of the data.

It then closes the stream and starts to read from the second source as mentioned in

program of sequence. So, we see in output, all characters are read, close the file and

then characters of second file are read accordingly.

Random access of Files:

In previous examples, either read or write mode was activated and then that type of

operation was done. A file can be opened as „read mode by sysmbol r‟ , „write mode

by symbol w‟ or „open a data file as both read-write mode‟. In this example, opening

a data file as read-write r-w mode is demonstrated. The basic concept of read-write

data from/to a data file is that we must remember the type of data are stored and the

same sequence to be read. Technology behind that is that different types of data

occupies different spaces in the source of storage device. In this example, first „Y‟ is

saved, then an integer number „3045‟ is stored and so on. After writing all data to

device, file is not closed. One point is required to know that when any data is

written, an index pointer points to that position of the storage device. This index

pointer can be moved forward backward by instructions. Here, we used „seek(0)‟ to

move at the beginning of the data file. Then using readChar();readInt(); etc. we have

read data one by one. But, remember that we have not closed the data file after

storing data, also not opened the data file for reading data. It is known as random

mode and the file was opened as ("rand.dat","rw");

//RandomFile.java: this example shows how to read and write data in a same

//file without closing the file. There are options available for opening file as read-r,

//write-w and read-write-rw.

import java.io.*;

class RandomFile

{

 public static void main(String args[])

 {

 RandomAccessFile f1=null;

 try

 {

 //open the data file as both read and write mode.

 f1=new RandomAccessFile("rand.dat","rw");

 f1.writeChar('Y');

 f1.writeInt(3045);

 f1.writeDouble(24.5045);

java.lang.Object

 java.io.InputStream

 java.io.SequenceInputStream

https://www.cs.drexel.edu/~umpeysak/Xtango/docs/java.lang.Object.html#_top_
https://www.cs.drexel.edu/~umpeysak/Xtango/docs/java.io.InputStream.html#_top_

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.22

 f1.seek(0); // point to the beginning of the file

 System.out.println(f1.readChar());

 System.out.println(f1.readInt());

 System.out.println(f1.readDouble());

 f1.seek(2); // point to the 2nd item/data

 System.out.println((f1.readInt()));

 f1.seek(f1.length());// goto the end of file

 f1.writeBoolean(true);

 f1.seek(4);// goto the 4th item lastly stored.

 System.out.println(f1.readBoolean());

 f1.close();

 }

 catch(IOException e) {System.out.println(e);}

 }

}

OUTPUT:

E:\example>java RandomFile

Y

3045

24.5045

3045

true

Discussions: many jobs of file operations have been shown in this program. These

jobs are:

i. How to open a Randomaccess data file

ii. How to write/save data within randomaccess file.

iii. How to move file indicator/index pointer over the data.

iv. How to jump to a particular data position

v. How to count total length of a data file.

vi. How to junp at beginning or end of a data file

vii. How to close a data file.

These are the very important questions related to data file management. Answers are

given below:

i. Generally a data file is opened as „r‟-read mode and as „w‟-write mode;

but, if we need to want the data file as random (read-write) mode we

have to open the data file as “rw” : read-write mode as shown below:

f1=new RandomAccessFile("rand.dat","rw");

ii. When a datafile is declared as “rw” mode which is known as random

access file; for writing a particular type of data like character, integer or

double- different methods are there to write data as shown below:

 f1.writeChar('Y');

 f1.writeInt(3045);

 f1.writeDouble(24.5045);

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.23

Computer can mesmerize the sequence of stored data that first it was saved a

character, then an integer number, then a double number. At the time of reading,

pointer should point at beginning of that data and then can read the full data as

example, an integer of four digits were saved, so, at the time of reading it will read

four digits only not more or not less digits.

iii. How to move pointer over data: internally there is a pointer which

moves over the data(but in Java pointer concept is not there), when a

data is read it resides at beginning of the next data. So, when

f1.readChar(),f1.readInt() or f1.readDouble() methods are used to read

data it can read the all bits stored for that data type. Generally, reading a

data, pointer resides at the beginning of the next data. After reading a

data pointer automatically moves to the next data.

iv. Generally read(), write() methods jumps to next data. There is another

method seek() can jump in front or back positions of a data. As example-

this statement can jump to next 2
nd

 data position. As written in previous

program:

f1.seek(2); // from current position jumps to next 2nd data beginning
f1.seek(0);// points to beginning of the file

f1.seek(f1.length());//points to at end of file
v. In the above program, f1, is the data file handler; so f1.length() will

return the size in bytes of the file which is very important to know

whether the file is empty or not. If not empty, then it is required to know

the size for getting idea of memory size.

vi. How to jump back and front from a given position: file pointer remains

at a position over the data, if it is required to move forward then

instructions are given like: f1.seek(2); which will move two data ahead;

if it is integer/double – it will move so many bits ahead from the current

position. The seek() method can track this situations of lengths of

different data types. If seek(-2) contains minus parameter, it will jump

backward accordingly.

vii. When working of read/write is done, the best practice is to close the file

for safety. The statement f1.close(); will close the data file which is

linked with „f1‟; the file handler. By this closing, the memory occupied

by the file handler „f1‟ will be released for other operations.

//RandomAppend.java: this file open the text file as read and write mode

//appends data at end of the file. It open previous file with its data and

//appends at end of the file.

import java.io.*;

class RandomAppend

{

 static public void main(String args[])

 {

 RandomAccessFile rf;

 try

 {

 rf=new RandomAccessFile("states.txt","rw");

 rf.seek(rf.length());

 rf.writeBytes("ASSAM\n MAHARASTRA\n");

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.24

 rf.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 }

 }

}

After two times of run of the program, the contents of the data file „country.txt‟ is:

E:\example>type states.txt

ASSAM

 MAHARASTRA

ASSAM

 MAHARASTRA

//database.java: by this program, first a data file is opened by name ‘shop.dat’, then

//input three values of a medicine, as serial number, quantity and unit price, then

//these three contents are stored in the data file. At last, read three values from the

//data file, calculate total value, discount and the payable amount of a sales.

import java.io.*;

import java.util.*;

class database

{

 static DataInputStream di=new DataInputStream(System.in);

 static StringTokenizer st;

 public static void main(String args[]) throws IOException

 {

DataOutputStream dout=new DataOutputStream(new

FileOutputStream("shop.dat"));

 //reading from Keyboard

 System.out.println("Medicine Serial number: ");

 st=new StringTokenizer(di.readLine());

 int slno=Integer.parseInt(st.nextToken());

 //input quantity

 System.out.println("How many quantity?");

 st=new StringTokenizer(di.readLine());

 int qty=Integer.parseInt(st.nextToken());

 //input unit price

 System.out.println("Enter Unit Price:");

 st=new StringTokenizer(di.readLine());

 double price=new Double(st.nextToken()).doubleValue();

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.25

 //data is to be stored in file 'store.dat'

 dout.writeInt(slno);

 dout.writeInt(qty);

 dout.writeDouble(price);

 dout.close();

 //Read data from data file

DataInputStream dis=new DataInputStream(new

 FileInputStream("shop.dat"));

 int codeno=dis.readInt();

 int quantity=dis.readInt();

 double unitcost=dis.readDouble();

 double total=quantity*unitcost;

 double discount=(total*8)/100; // 8% discount

 dis.close();

 //display output

 System.out.println();

 System.out.println("Sl No : " + codeno);

 System.out.println("Unit Price : " + unitcost);

 System.out.println(" Total Quantity : " + quantity);

 System.out.println(" Total Price : " + total);

 System.out.println(" Payable amount :" + (total-discount));

 }

}

OUTPUT:

E:\example>java database

Medicine Serial number,in int?

22

How many quantity?

10

Enter Unit Price:

500

Sl No : 22

Unit Price : 500.0

 Total Quantity : 10

 Total Price : 5000.0

 Payable amount :4600.0

Discussions: this example is prepared to demonstrate all features of file handling as

input and output jobs. First of all two static objects are created as „di‟ and „st‟

meaning that these names (di or st) can‟t be reasssigned for other purposes. A new

class is used by name „StringTokenizer’ which contain many methods for handling

string operations for different tokens. But, in this example, we have used this class

for inputting serial number, then we convert the string token into integer value as:

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.26

int slno=Integer.parseInt(st.nextToken());

This is nothing but to show uses of the class „StringTokenizer‟. In different ways

how we can use this class that is demonstrated. The indicator of tokens „st‟ will

indicate the next token as second inputted data. The advantage is that by only one

indicator „st‟ we can identify different tokens one after another, only jumps to next

tokens. Second token is converted as double data type by this line:

double price=new Double(st.nextToken()).doubleValue();

Many advanced techniques are used in this program and presented here for academic

interest of learning. One point is must that if you open once a file, should close

before exit the program and it is done in these ways:

dout.close();

dis.close();

Real Life Data Form:

In this example, a simple form with three columns are shown. If three columns can

be created, then any numbers of columns can be extended using the same logic.

Then, two push buttons „Input‟ and „Exit‟ are created to input data again and again,

finally exit from the program. To create real life features, more programming codes

are required to write. Some features are demonstrated in this program as shown

below:

//DataEmp.java: It is a demo of a small form to input employee code (as integer),

name as String, salary as double. After input of data in any field, Tab key to be

pressed to move to next fields. For saving data in datafile, press INPUT, to Quit press

EXIT.

import java.io.*;

import java.awt.*;

class DataEmp extends Frame

{

 //Frame of a window is created

 TextField empcode, name, salary;

 Button INPUT, EXIT;

 Label codeLabel, nameLabel, salaryLabel;

 DataOutputStream douts;

 //Frame

 public DataEmp()

 {

 super("Create Payroll of Employee");

 }

 //setup the window

 public void setup()

 {

 resize(50,25);

 setLayout(new GridLayout(4,2));

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.27

 //create components of the Frame

 empcode=new TextField(35);

 // Employee code is in integer

 codeLabel=new Label("Employee Code :");

 name=new TextField(35);

 nameLabel=new Label("Employee Name:");

 salary=new TextField(35);

 salaryLabel=new Label("Salary:");

 INPUT=new Button("INPUT");

 EXIT=new Button("EXIT");

 //add the component to the Frame

 add(codeLabel);

 add(empcode);

 add(nameLabel);

 add(name);

 add(salaryLabel);

 add(salary);

 add(INPUT);

 add(EXIT);

 //show the frame

 show();

 //open the file

 try

 {

douts=new DataOutputStream(new

 FileOutputStream("employee.dat"));

 }

 catch (IOException e)

 {

 System.err.println(e.toString());

 System.exit(1);

 }

 }//end of setup

 //write to the file

 public void addRecord()

 {

 int num;

 Double d;

 num = (new Integer(empcode.getText())).intValue();

 try

 {

 douts.writeInt(num);

 douts.writeUTF(name.getText());

 d=new Double(salary.getText());

 douts.writeDouble(d.doubleValue());

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.28

 }

 catch(IOException e){}

 //clear the text field

 empcode.setText("");

 name.setText("");

 salary.setText("");

 }

 //adding the record and clearing the field

 public void cleanup()

 {

 if(!empcode.getText().equals(""))

 {

 addRecord();

 }

 try

 {

 douts.flush();

 douts.close();

 }

 catch(IOException e){}

 }

 //processing the event

 public boolean action(Event event, Object o)

 {

 if(event.target instanceof Button)

 {

 if(event.arg.equals("INPUT"))

 {

 addRecord();

 return true;

 }

 }

 return super.action(event, o);

 }

 public boolean handleEvent(Event event)

 {

 if(event.target instanceof Button)

 {

 if(event.arg.equals("EXIT"))

 {

 cleanup();

 System.exit(0);

 return true;

 }

 }

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.29

 return super.handleEvent(event);

 }

 //execute the program and the main module

 public static void main(String args[])

 {

 DataEmp employee = new DataEmp();

 employee.setup();

 }

}

OUTPUT:

The layout of the data input screen is shown below:

Discussions: the new things, three classes, we have added in this programs are:

TextField: to work with text within any label of a column

Button: to work with push button

IOException: to work with input/output errors

In the program, two user defined methods are created as DataEmp() and setup().

Within the program, these two lines may look like estrange, but, has internal

meanings:

INPUT=new Button("INPUT");

EXIT=new Button("EXIT");

Descriptions are like these: In first line, “INPUT” within quotation is the text which

will be displayed on the push button. But, at left most INPUT without quotation

mark is really an user defined variable which holds the starting address of the text

“INPUT” is stored within the memory of the computer. Two versions of INPUT in

right and left are fully two things. In the same way, EXIT of right side and left side

of the second line should be described. Another new command is:

douts.writeUTF(name.getText());

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.30

Here, the method „writeUTF()‟ writes the text in Unicode Translation Format(UTF).

It is a coding pattern of texts. There are three UTF coding and these are, UTF-8,

UTF-16, UTF-32 of different sizes of formats.

Exception handling is one of the advanced topic and should be included within the

program when input/output file handling operations are performed. In this program,

it is included as:

catch (IOException e)

 {

 System.err.println(e.toString());

 System.exit(1);

 }

These lines of code will catch the error and print as per system‟s error message,

finally the program will exit to the operating system, i.e., java program will be

unsuccessfully terminated. In java, System.exit(0) means successful termination and

System.exit(1) means unsuccessful termination of the program.

Finally, the main() method of the program contains only two lines as:

DataEmp employee = new DataEmp();

 employee.setup();

Here, „DataEmp‟ is the user defined class and at first of the program we have created

it and the last „}‟ has closed the class body. Within main(), „employee‟ is the object

created from the newly created class „DataEmp‟ and from that object setup() method

has called to run the program. The user defined method „setup()‟ contains all

necessary elements to run and execute the program.

Questions and Answers:

1. What is data? Why is it required to save in storage media?

2. What are the differences between Text file and Data File?

3. Mention any two extension names of audio files.

4. Mention any two extension names of video files.

5. Mention a name of a method which can open a file.

6. What is the value in hexadecimal (65)10 = (?)16

7. What are the 16 digits in hexadecimal number system?

8. Describe the instruction: DataInputStream din=null;
9. Describe the instruction: rf=new RandomAccessFile("states.txt","rw");

10. Describe the instruction: douts.writeUTF(name.getText());

B.1. What will be stored by this command dout.writeBoolean(true); ?

B.2. This command will put the indicator at what position of the file?

 rf.seek(rf.length());

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.31

B.3. Sequence of stream is required to manage multiple files. What is the role of

the command as mentioned below?

 f3=new SequenceInputStream(f1,f2);
B.4. Where this command will point to?

 f1.seek(4);

B.5. What will happen if we give double quote as “D” in this command as shown

below?

 dout.writeChar('D');

C. Multiple Choices Questions:

C.1. In text file, which format is used to store data:

a. in ASCII format

b. in UTF-8 format

c. in WAV format

d. None of the above

C.2. What will be the output of the command:

System.out.printf("ASCII code in Decimal is %d of %<c \n", 97);

a. ASCII code in Decimal is 61 of “A”

b. ASCII code in Decimal is 97 of “a”

c. ASCII code in Decimal is “a” of 97

d. ASCII code in Decimal is 61 of “a”

C.3. Reason of closing a data file as din.close();

a. Data file will not be encrypted.

b. Data file may be damaged.

c. Program will not be compiled.

d. Compilation error will happen.

C.4. The best answer of this instruction is: FileWriter out1=null;

a. Object out1 is assigned with null value.

b. Object out1 is created from FileWriter and its address is assigned as null.

c. Object out1 is equal to zero.

d. All of the above.

C.5. This instruction, catch(IOException e){}, is used for

a. Printing error after compilation.

b. Printing error after execution of the program.

c. To hold input/output error within the object “e”.

d. To catch all errors in the program.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.32

Answers :

C.1. a; C.2.d; C.3. b; C.4. b; C.5. c;

Conclusion:

Within 10 chapters, we have covered most of the important features of JAVA

programming; discussed theoretical issues with the help of examples of program,

output of all programs are presented that readers can understand how the programs

will behave. At end of each program, discussions have been included to describe

new commands added in that program which will help readers to understand new

features with its practical effects. This book is aimed for the beginners and middle

range readers who want to learn programming of JAVA.

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.33

Link of PPT of this book and all source codes:

https://drive.google.com/drive/folders/1bMxMCaqPe0W35COAdn_-

BrnV_uzQ-tNO?usp=sharing

(Note: to get access, copy and paste this link to your browser. Both PPT and PDF

version of presentation of this book are uploaded in Google Drive.)

Copyrights:@ All rights of this book chapter is reserved to the publisher, Applied Computer

Technology, Kolkata, India. No parts are allowed to reproduce in other book, media or publications,

but, are allowed to use for academic non-profit purposed. For any permission of reproduction, write to

info@actsoft.org, website: actsoft.org

END

mailto:info@actsoft.org

Introduction to JAVA Programming: a programming guide by Dulal Acharjee

10.34

About the Author:

Dulal Acharjee: he is retired Professor of Computer Science and Engineering

and Information Technology subjects. At present he is working as the Director of

„Applied Computer Technology‟, Agarpara, Kolkta, West Bengal, India. He also

worked as visiting Faculty in Maulana Abul Kalam Azad University of Technology,

Kolkata. He is M.Tech in Information Technology from Tezpur University, Assam,

India; before, he did M.Sc. in Applied Physics and Electronics from Dhaka

University. He has 30 years of teaching experiences in different College and

Universities. He has published about 40 number of research papers published in

different indexed journals, 4 book chapters, 10 edited Books and editor of many

special issues of SCI indexed journals. He is Associate Editor and Lead Guest Editor

of the Journal of Microsystem Technologies, Springer-Nature, SCI indexed. He is

working as the Executive Chairman of many international conferences of science

and engineering subjects.

